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1.  Introduction 

The National Oceanic and Atmospheric Administration (NOAA) is accelerating its efforts to improve its 

numerical guidance and prediction capability for the extended range - the weeks 3 & 4 period that bridges the 

gap between weather and climate. Operational global numerical guidance for weeks 3 & 4 and monthly 

prediction are currently available from NOAA’s National Center for Environmental Prediction (NCEP) 

Climate Forecasting System Version 2 (CFSv2) coupled (ocean, sea-ice, land, atmosphere) model (Saha et al., 

2006; Saha et al., 2010; Saha et al., 2014). Extending the NCEP Global Ensemble Forecasting System (GEFS) 

to cover the weeks 3 & 4 period provides additional benefits over the CFSv2 including a more frequent model 

upgrade cycle, higher model resolution, state-of-art flow-dependent initial perturbations from a hybrid data 

assimilation system, stochastic physics, and larger ensemble membership (80 perturbed members and 4 

control runs for every 24-h period), all providing an improved sampling of forecast uncertainty. 

In this study, an operational GEFS configuration is extended to 35 days and the forecast skill is evaluated. 

Various SST forcing experiments are performed to examine the impact of SST forcing on the extended-range 

forecast skill of global 2-m temperature, accumulated precipitation over the contiguous United States 

(CONUS), and Madden-Julian Oscillation (MJO; Madden and Julian, 1971) indices. 

2.  Methodology 

The current operational configuration of GEFS uses the GFS Global Spectral Model v12.0.0 for 

integration four times per day (0000, 0600, 1200 and 1800 UTC) out to 16 days (Han and Pan 2011; Juang 

2011, 2014). For days 0-8, GEFS has a spectral resolution of TL574 (approximately 34 km) with 64 vertical 

levels and the horizontal resolution is reduced to TL384 (approximately 52 km) for days 8-16. The horizontal 

resolution is further reduced to TL254 (approximately 78 km) for days 16-35 for the extended GEFS runs in 

this study. The 20-member ensemble initial condition perturbations are selected from the operational hybrid 

NCEP Global Data Assimilation System (GDAS) 80-member Ensemble Kalman Filter (EnKF; Whitaker et 

al., 2008; Wang et al. 2013; Kleist and Ide 2015) prior. 

 The SST configurations for this study consist of the operational GEFS 90 day e-folding of the observed 

RTG SST anomaly relaxed to climatology (CTL), an optimal Atmospheric Model Intercomparison Project 

(AMIP; Gates et al. 1999) configuration using the observed RTG SST analysis updated every 24-h during 

model integration (RTG), a 2-tier approach using the CFSv2 predicted SST updated every 24-h during model 

integration (CFS), and a 2-tier approach using biased corrected CFSv2 predicted SST updated every 24-h 

during model integration (CFS_BC). Detailed formulations for CTL and CFS_BC can be found in Appendix 

A. 

 All experiments span the fall and winter of 2013-14 and are initialized every 24 h starting 1 Sep 2013 and 

ending 28 Feb 2014. Over the experiment period, the MJO was weak or non-existent (Climate Prediction 

Center; http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/whindex.shtml) and ENSO neutral 

conditions persisted (Earth System Research Laboratory; http://www.esrl.noaa.gov/psd/enso/mei). 
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The forecast skill for 2-m temperature and 

accumulated precipitation are evaluated using a 

tercile (below-normal, normal, or above-normal with 

random chance being ⅓) probabilistic Heidke Skill 

Score (HKSS; e.g., Wilks, 2011). The 2-m 

temperature is verified for land only against the 00 

UTC GDAS analysis and the accumulated 

precipitation is verified for land only against the 00 

UTC NCEP Climatologically Calibrated Precipitation 

Analysis (CCPA; Hou et al., 2014) averaged or 

accumulated over days 8-14 (week 2) and days 15-28 

(weeks 3 & 4).  

The MJO is evaluated using the traditional real-

time multivariate MJO (i.e. RMM) index (WH index; 

Wheeler and Hendon 2004, Gottschalck et al. 2010). 

The MJO forecast skill is defined as the bivariate 

anomaly correlation between the analysis and forecast 

RMM1 and RMM2. The long term climatology is 

calculated from the NCEP/NCAR Reanalysis 1 

(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep

.reanalysis.html) and NCAR Interpolated Outgoing 

Longwave Radiation (http://www. esrl.noaa.gov/psd/ 

data/gridded/data.interp_OLR.html) for the period of 

1981-2010. The long term mean and average of the 

previous 120 days are removed from the forecast to 

eliminate long-term trends and seasonal variability. 

3.  Results and discussion 

3.1  2-m temperature forecast skill 

Over the fall and winter of 2013-14, the global 

land only 2-m temperature HKSS is regionally and 

lead time dependent. The tropics (TR) have the 

highest HKSS for both week 2 (Fig. 1a) and weeks 3 

& 4 (Fig. 1b) with N. America (NA) having the 

lowest. Comparing between week 2 and weeks 3 & 4, the HKSS remains similar for the tropics and Southern 

Hemisphere (SH) with the Northern Hemisphere (NH) and NA dropping ~0.1-0.2. Within each region, the 

forecast skill for the SST forcing experiments is generally statistically indifferent from CTL for both week 2 

and weeks 3 & 4. Both CFS and CFS_BC show a statistically significant improvement during weeks 3 & 4 

over NA. It is interesting that RTG does not have a significant improvement over any land region compared 

to the other experiments, given this experiment is being forced the SST analysis. This suggests that there may 

be deficiencies in the forecast model which are limiting the spread of information from the ocean boundary to 

atmospheric land areas and the climatology of the SST analysis is most likely different than that of the model. 

3.2  Accumulated precipitation forecast skill - CONUS 

The CONUS accumulated precipitation HKSS shows no statistically significant difference between CTL 

and RTG, CFS, or CFS_BC for week 1 (not shown), week 2 (Fig. 1b), or weeks 3 & 4 (Fig. 1d). The 

magnitude of the HKSS falls off drastically after week 1 - approx. 0.55 at lead day 1 and 0.25 by lead day 7 

(die off curves not shown). The aggregate accumulated week 2 HKSS is slightly higher than week 3 & 4, but 

overall, the results suggest minimal skill with the current model configurations, regardless of SST forcing. 

  

Fig. 1  Regional Heidke Skill Score for CTL (black), 

RTG (red), CFS (green), and CFS_BC (blue) 

calculated for week 2 (top row) and week 3 & 4 

(bottom row) for 2-m temperature (a, c) and 

accumulated precipitation (b, d) averaged over 

the 6-month experiment period. The gray 

triangle indicates the difference of an 

experiment from CTL is statistically significant 

at the 95% confidence level. 
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3.3.  MJO forecast skill 

The forecast skill of MJO is a key metric 

when evaluating the capability of operational 

models for subseasonal forecasts (Kim et al. 

2014; Shelly et al. 2014; Ling et al. 2014; 

Xiang et al. 2015). The MJO forecast skill in 

the operational version of GEFS is ~14.6 

days (defined as the lead time when the 

bivariate anomaly correlation coefficient 

drops to 0.5)  during the experimental period 

(Fig. 2). After week 2, MJO forecast skill 

quickly drops. Changing the prescribed SST 

to be closer to observations (RTG), the MJO 

forecast skill was improved up to ~2 days. 

For the weeks 3 & 4 range, the most skillful 

SST forcing is RTG with the CFS_BC being 

the most skillful scheme that could be 

practically used in operations. This implies that the MJO prediction skill is related to the accuracy of the 

representation of the SST. Therefore, without changing the model, it is found that improving the SST may 

potentially lead to an increase of the MJO skill. 

4.  Summary 

The NCEP GEFS is being extended from 16 to 35 days to cover the subseasonal forecast period. The 

impact of SST forcing on the extended range land only global 2-m temperature, CONUS accumulated 

precipitation, and MJO indices forecast skill were examined using various SST forcing configurations. 

Extending the GEFS showed forecast skill over weeks 3 & 4 for temperature, but minimal to no skill for 

accumulated precipitation. Forcing the GEFS with an optimal SST configuration showed minimal to no 

improvement in land only 2-m temperature and accumulated precipitation. Minimal improvements using 

more realistic SST over the current operational SST configuration were found when validating over the 

Tropics, Northern Hemisphere, Southern Hemisphere, and North America. The bias corrected CFS_BC SST 

performed the best over NA with statistically significant improvements for 2-m temperatures. The minimal 

differences in skill between SST forcing experiments suggests that systematic model errors dominate at the 

extended period with model boundary condition forcing having a secondary impact. The MJO skill in 

operational GEFS is 14.6 days. Using more realistic SST (RTG, CFS, and CFS_BC), MJO skill increase by 

10%. 

Observations indicate that the fall and winter of 2013-14 has a generally weak MJO. Future work will 

focus on a two-year span that covers a stronger MJO period spanning 1 May 2014 to 31 May 2016 providing 

insight into the predictability from strong MJO and its relationship with 2-m temperature and CONUS 

accumulated precipitation from global teleconnections. 

This summary is a subset from a study in preparation for publication (Zhu et al. 2017). 

APPENDIX 

SST Forcing Calculations 

Operational GEFS SST Forcing (CTL) 

The GEFS v11 operational SST forcing uses a 90-day e-folding of the RTG analysis at initialization, 

relaxed to climatology, calculated as 

SST𝑓
𝑡 = [SST𝑎

𝑡0 − SST𝑐
𝑡0]𝑒−(𝑡−𝑡0)/90 + SST𝑐

𝑡 

Fig. 2  MJO forecast skill (i.e. bivariate correlation between 

ensemble mean forecast and analysis data) as a function 

of lead time for the period of September 1, 2013 - 

February 28, 2014. 
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where f is the forecast, a the analysis, c is climatology, t is forecast lead time, and t0 is the initial time. 

Bias Corrected CFSv2 Predicted SST Forcing (CFS_BC) 

The CFS_BC SST forcing is a hybrid of a persisted RTG anomaly at short lead times and bias corrected 

CFSv2 predicted SST at longer lead times. The CFSv2 predicted SST is bias corrected using both the CFSR 

climatology and CFSv2 model climatology. The persisted RTG anomaly is linearly combined with the bias 

corrected CFSv2 predicted SST over the 35 d period, calculated as 

SST𝑓
𝑡 = (1 − 𝑤)[SST𝑎

𝑡0 − SST𝑐𝑓𝑠𝑟𝑐
𝑡0 + SST𝑐𝑓𝑠𝑟𝑐

𝑡 ] + 𝑤[SST𝑐𝑓𝑠
𝑡 − (SST𝑐𝑓𝑠_𝑐

𝑡 − SST𝑐𝑓𝑠𝑟𝑐
𝑡 )] 

where f is the forecast, a the analysis, cfsrc is the CFSR reanalysis climatology, cfs is the CFSv2 model 

forecast,  cfs_c is the CFSv2 model climatology, t is forecast lead time, t0 is the initial time, and w is defined 

as 

𝑤 = (𝑡 − 𝑡0)/35 
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